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I. INTRODUCTION 

This paper assesses the effect which Stokes flow separation has on the drag and torque on a 
fixed body. In Dorrepaai et al. (1976) the axisymmetric streaming Stokes flow past a spherical 
cap was found to produce separation on the cap for all cap angles a, 0 < a < 7r. It is shown here 
that if the surface area is kept constant the maximum drag occurs in the limiting case of the 
disk where there is no separation and decreases monotonically with increasing a until the 
minimum is attained in the case of a sphere. Clearly the effect of separation in this situation is 
to decrease the drag on the cap. 

Dorrepaal (1976) first discussed the separation on a spherical cap in asymmetric streaming 
Stokes flow and gave general expressions for the drag and torque on the cap. If the area of the 
cap is kept constant the drag increases with a until a = 61.40 °, then decreases with increasing a. 
Separation commences at 60.90 ° and clearly the effect of separation is drag reduction. The 
torque on the cap is also considered together with the flow produced by a two dimensional 
eccentric bearing. In both cases a similar conclusion is borne out. 

2. DRAG ON A SPHERICAL CAP 

Consider the set of all spherical caps having constant surface area A. If a cap of radius c 
and angle a belongs to this set then 

A = 21rc2(1 - cos a) .  [2.1] 

Let D be the Stokes drag experienced by the cap as it moves parallel to its axis through a 
quiescent fluid. From Dorrepaal et al. (1976) we have 

D = Ucpl,(6a + 8 sin a + sin 2a) ,  [2.2] 

where U is the cap's velocity and p and u are fluid density and viscosity respectively. We can 
eliminate c from (2.2) using (2.1) and then define D,(a)  to be the normalization of D such that 
D,(0) = 1. Thus we have 

D,(a)  = 6 a + 8 s i n a + s i n 2 a  , 0 < a < ~ r .  [2.3] 

32 sin ~ a 

When a = or, the cap is a sphere and in the limiting case ot -->0, c -+ + ~ with ac = b, the cap 
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Figure 1. Drag and torque vs cap angle a. 

degenerates to a disk of radius b. Figure 1 shows that Ds attains its maximum value in the 
limiting case a = 0. 

Dorrepaal et al. (1976) have shown that the axisymmetric Stokes flow past a spherical cap 
separates for all angles a > 0. In the case of the disk however, no wake is present. Ds is a 
maximum therefore when the axisymmetric flow is about to separate. As a increases and the 
wake develops, Ds decreases monotonically. 

In a similar way let Da(a) be the normalized Stokes drag experienced by a cap which moves 
perpendicular to its axis. Once again we consider only caps with surface area A. From 
Dorrepaal (1976) we have 

• 2 4 1 
3 ~ + sin 8 sin a cos ~ a } 

~ + s - - -~n a J" [2.4] Da(a) = (6(a a) 
64sin~a 

Figure 1 shows that Da has a maximum when a = 61.40 °. Dorrepaal (1976) has shown that the 
asymmetric Stokes flow first separates when a = 60.90 °. Just as in the axisymmetric case the 
drag attains a maximum when the flow begins to separate. As the wake grows larger with 

increasing a, Da decreases. 

3. T O R Q U E  ON A S P H E R I C A L  CAP 

When a cap moves perpendicular to its axis in a quiescent fluid, it experiences a torque 
about its centre of mass. In the limiting cases of a disk and sphere the torque is zero. A cap 
having area A experiences a torque which from Dorrepaal (1978) is proportional to 

~"  2 4 1 

1 {(3a_sina)cose~a 2 (5+c°sa ,s ln  a cos ~a~ 
~'(a)= . 21 3 a ~ s i n a  J" [3.11 

s i n  ~ a 

The curve of z vs a has a maximum at a = 63.55 °. As with the asymmetric drag the torque is 
greatest when the flow about the cap has just begun to separate. 

4. ECCENTRIC BEARING 

Consider now a bounded Stokes flow which exhibits separation. One example of such a flow 
is the eccentric bearing investigated by Jetfery (1922) and Wannier (1950). A small cylinder 
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rotates inside a larger stationary cylinder causing the fluid between the cylinders to rotate. The 
cylindrical radii are aI and a2 (al < a2) and the distance e between the axes of the cylinders is a 
parameter of the problem. The case e = 0 gives a concentric configuration and when e = a2 - al, 

the two cylinders are tangent. 
The case ul = 1, a2 = 2 is typical. The torque on the outer cylinder is proportional to 

where 

T =(a, 
sinh’ a,[(~, - a2) coth (a, - a2)- I] 

- aZ)(sinh2 a1 + sinh2 az) - 2 sinh al sinh cr2 sinh (a, - a2) ’ 
f4.11 

cash a, =G 
1 

and sinh (12 = 2 sinh al . 

From figure 2 it is seen that T is a monotonically decreasing function of e which vanishes in 
the limit e --) 1. It can be shown from Wannier (1950) that a region of reverse flow first appears 
when e = 0.32 and grows as e increases. 

1.3: 
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Figure 2. Torque vs distance between cylindrical axes. 

5. CONCLUSIONS 

Both the axisymmetric and asymmetric Stokes ffows past a spherical cap exhibit separation 
along the concave surface of the cap. If one considers the sel of all caps having constant 
surface area, then the member of this set experiencing the maximum drag in either case is the 
cap which is just concave enough to induce separation. As a increases beyond this value the 
wake becomes larger and the drag actually drops. In the asymmetric ffow a similar result holds 
for the torque about the cap’s centre of mass. These observations suggest that as a body 
deforms keeping its surface area constant, the formation and development of Stokes wakes 
have a streamlining effect dynamically thus reducing drag and torque. 

The case of the eccentric bearing is different and yet a similar principle holds-namely, 
separation of the flow serves to reduce the torque on the outer cylinder. When there is no 
reverse flow the shear stress is in the same direction over the entire circumference of the outer 
cylinder. But when the flow separates the shear stress along the boundary in the separated 
region is opposed to that over the rest of the circumference. The result is a reduction in the 
torque. In the limiting case when the two cylinders are tangent, the shear stress is singular at 
the point of contact and the contribution to the torque from this singularity exactly cancels the 
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contribution from the region of reverse flow. Thus the torque vanishes when the cylinders are 
in contact. 
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APPENDIX 

Since the shear stress on the boundary of the cap changes sign when separation or reverse 

flow occurs and stress is force per unit area it is necessary to maintain the total area of the cap 

constant when examining the variation of the force on the cap. If the cross-section of the cap is 
kept constant towards the mainstream flow then it is found that the drag on the cap increases with 
the angle of the cap, reaching a maximum in the case of a sphere. 


